
Appendix A 

Vector differential operators 

In this Appendix we introduce orthogonal curvilinear coordinates and derive the 
general expressions of the vector differential operators in this kind of coordinates. 
Moreover, we give the expressions of the differential operators for the particular 
cases of cylindrical and spherical coordinates. The presentation follows closely 
the treatment given in Calculus of Several Variables (Adams [2, p. 336]) from 
which the figures have been borrowed, by gentle permission of the author. 

A.I Orthogonal curvilinear coordinates 

We assume that (u, v, w) are a set of orthogonal curvilinear coordinates in xyz­
space defined via the transformation 

x = x(u,v,w), y = y(u,v,w), z = z(u,v,w). 

We also assume that the coordinate surfaces are smooth at any nonsingular point 
and that the local basis vectors U, v and in at any such point form a right-handed 
triad. 

The position vector r of a point Pin xyz-space can be expressed in terms of 
the curvilinear coordinates: 

r = x(u, v, w) i + y(u, v, w)j + z(u, v, w) k. 

If we hold v = Vo and w = Wo fixed and let u vary, then r = r( u, Vo, wo) defines 
a u-curve in xyz-space. At any point P on this curve, the vector 

ar. = ax i + ay j + az k 
au au au au 

is tangent to the u-curve at P. In general, the three vectors 

ar 
au' 

ar 
av' 

ar 
aw 
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are tangent, respectively, to the the u-curve, the v-curve and the w-curve through 
P. They are also normal, respectively, to the u-surface, the v-surface and the 
w-surface through P, so they are mutually perpendicular. (See Figure A.I) The 
lengths of these tangent vectors are called the scale factors of the coordinate 
system and are therefore defined by 

The scale factors are nonzero at a nonsingular point P of the coordinate system, 
so a local basis for the coordinate system at P can be obtained by dividing the 
tangent vectors to the coordinate curves by their lengths. Denoting the local 
basis vectors by ii, v and W, we have 

or h ~ or h ~ au = u U , ov = vV, 

The basis vectors ii, v and W will form a right-handed triad provided we have 
chosen a suitable order for the coordinates u, v and w. 

The volume element in an orthogonal curvilinear coordinate system is the 
volume of an infinitesimal coordinate box bounded by pairs of U-, v- and w­
surfaces corresponding to values u and u + du, v and v + dv and wand w + 
dw, respectively. See Figure A.I. Since these coordinate surfaces are assumed 
smooth, and since they intersect at right angles, the coordinate box is rectangular 
and is spanned by the vectors 

~: du = huduu, ~: dv = hvdvv, :: dw = hwdww. 

Therefore, the volume element is given by 

dV = huhvhw du dv dw. 

Furthermore, the surface area elements on the U-, v- and w-surfaces are the 
areas of the appropriate faces of the coordinate box: 

The arc length elements along the U-, v- and w-coordinate curves are the edges 
of the coordinate box: 

dsu = hu du, dsv = hv dv, dsw = hw dw . 

A.2 Differential operators 

The gradient Vi of a scalar field i can be expressed in terms of the local basis 
at any point P with curvilinear coordinates (u, v, w) in the form 

Vi = Fu ii + Fv v + Fw W. 
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(u,v+dv,w) 

hv dvv 
dV 
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Figure A.I: Infinitesimal coordinate box of an orthogonal co­
ordinate system. 
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In order to determine the coefficients Fu, Fv and Fw in this formula, we will 
compare two expressions for the directional derivative of I along an arbitrary 
curve in xyz-space. 

If the curve C has parametrization r = r( s) in terms of arc length s, then the 
directional derivative of I along C is given by 

dl a I du a I dv a I dw 
ds = au ds + av ds + aw ds· 

On the other hand, this directional derivative is also given by ~ = V/·.:y, where 
l' is the unit tangent vector to C. We have 

Thus 

~ dr ar du ar dv ar dw 
"Y = ds = au ds + av ds + aw ds 

h du ~ h dv ~ h dw ~ 
= u ds U + v ds v + w ds w. 

dl ~ du dv dw 
ds = VI· "y = Fuhu ds + Fvhv ds + Fwhw ds· 

Comparing these two expressions for dl / ds along C, we see that 

al 
Fuhu = au' 

Therefore, we have shown that 
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Now consider a vector field F expressed in terms of the curvilinear coordi­
nates: 

F(u, v, w) = Fu(u, v, w) u + Fv(u, v, w) v + Fw(u, v, w) W. 
The flux of F out of the infinitesimal coordinate box of Figure A.I is the sum of 
the fluxes of F out of the three pairs of opposite surfaces of the box. The flux 
out of the u-surfaces corresponding to u and u + du is 

F(u + du, v,w)· udSu - F(u, v, w). udSu 

= (Fu(u + du, v, w) hv(u + du, v, w) hw(u + du, v, w) 

-Fu(u, vow) hv(u, v, w) hw(u, v, w)) dv dw 

a 
= au (hvhwFu) dudvdw. 

Similar expressions hold for the fluxes out of the other pairs of coordinate sur­
faces. 

The divergence at P of F is the flux per unit volume out of the infinitesimal 
coordinate box at P. Thus it is given by 

I [a a V·F(u,v,w) = huhvhw ou(hvhwFu(u,v,w)) + ov(huhwFv(u,v,w)) 

+ :w (huhvFw(u, v, w))]. 

To calculate the curl of a vector field expressed in terms of orthogonal curvi­
linear coordinates we can make use of some previously obtained vector identities. 
First, observe that the gradient of the scalar field f(u, v, w) = u is u/hu , so that 
u = hu V u. Similarly, v = hv V v and W = hw V w. Therefore, the vector field 

F=Fuu+Fvv+Fw w 
can be written in the form 

F= Fuhu Vu + Fvhv Vv + Fwhw Vw. 

U sing the identity V X (fVg) = V f X V g, we can calculate the curl of each term 
in the expression above. We have 

VX(FuhuVu) = V(Fuhu)xVu 

= [~u:u(Fuhu)U+ ~v:v(Fuhu)V+ L:w(Fuhu)W] X~ 

= hu~w o~ (Fuhu) v - huIhv :v (Fuhu) W 

= hu:vhw [o~(Fuhu) (hvv) - :v(Fuhu) (hwW)] . 
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We have used the facts that uxu = 0, vxu = -wand wxu = v to obtain 
the result above. This is why we assumed that the curvilinear coordinate system 
was right-handed. Corresponding expressions can be calculated for the other two 
terms in the formula for V X F. 

Combining the three terms, we conclude that the curl of 

F = Fu u + Fv v + Fw w 

is given by 

huu hvv hww 
1 a a a 

VxF(u,v,w) = h h h 
au ov ow u v w 

Fuhu Fvhv Fwhw 

A.3 Cylindrical coordinates 

A.3.1 Definition 

For cylindrical coordinates we have r = r cos ¢ i + r sin ¢ j + z k, so 

or ,," ,,' or . ,,' ,,' or k or =cOS<pZ+Slll<p], o¢ =-rslll<pz+rcos<p], oz = . 

It should be noted that here r does not denote the magnitude of the position 
vector r, but the distance of r from the z-axis. Similarly, the vector r(¢) does 
not represent the unit vector in direction of r, but the directions orthogonal to 
the z-axis. 

The scale factors for the cylindrical coordinate system are given by 

hr=I~~I=l, h¢=I~~I=r, hz=I~:I=l, 
and the local basis consists of the vectors 

r = cos¢i + sin¢j, ¢ = - sin¢i + cos¢j, z=k. 
See Figure A.2. The local basis is right-handed. The unit vectors do not change 
with r or z, but 

or ~ 
o¢ =cp, 

The volume element is given by 

o¢ ~ 
o¢ = -r, 

oz 
o¢ = o. 

dV = hrh¢hz dr d¢ dz = r dr d¢ dz. 

Its boundary consists of surface elements on the cylinder r = constant, the half­
plane ¢ = constant and the plane z = constant. These elements are given, 
respectively, by 

dSr = r d¢ dz, dS¢ = dr dz, dSz = r dr d¢. 
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z 

y 

x 

Figure A.2: Cylindrical coordinate system. 

A.3.2 Gradient, divergence and curl 

In terms of cylindrical coordinates, the gradient of the scalar field f(r, ¢, z) is 
given by 

f( A, ) of - 1 of ;;. of_ 
V r, ,/" z = or r + -;. o¢ 'I" + OZ z. 

Since for cylindrical coordinates hr = hz = 1 and ho = r, the divergence of 
F = Fr r + F</> ¢ + Fz z is 

_ oFr ~F, ~ of</> oFz 
- or + r r + r o¢ + oz· 

The curl of F is given by 

r r¢ z 
1 0 0 0 

VxF= -
or o¢ OZ r 
Fr rF</> Fz 

= (~OFz _ OF</» r + (oFr _ OFz) ¢ + (OF</> + F</> _ ~ oFr) z. 
r o¢ OZ OZ or or r r o¢ 
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A.3.3 Laplace and advection operators 

Remembering that the Laplacian of a function f is defined by the relationship 

the results just obtained for the gradient and the divergence lead to the following 
expression for the Laplacian in cylindrical coordinates 

As far as the Laplacian of a vector field Fis concerned, its explicit expression 
can be derived from the vector identity 

'i12F= -Vx(VxF) + V(V .F), 

and using some previously obtained results. We obtain 

Finally, we give the expression in cylindrical coordinates of the advection 
operators for both a scalar and a vector field: 

[ aq,uq,] ~ (a· V)u = (a· V)ur - -r- r 

[ aq,Ur] ~ + (a· V)uq, + -r- c/> 

+ [(a. V)uz] z. 
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A.4 Spherical coordinates 

A.4.1 Definition 

For spherical coordinates we have 

r = r sin 0 cos ¢ i + r sin 0 sin ¢ j + r cos 0 Z. 

Thus the tangent vectors to the coordinate curves are 

or 'fl ,,' 'fl',,' fl~ or = sm u cos 'f' Z + sm u sm 'f' J + cos u Z 

or e ,,' e'''' 'Il~ ae = r cos cos 'f' Z + r cos sm 'f' J - r sm u Z 

or 'e',,' 'e ,,' a¢ = -rsm sm'f'z+rsm cOS'f'J, 

and the scale factors are given by 

hr = I ~~ I = 1, ho = I ~~ I = r, h¢ = I~;I = rsinO. 

The local basis consists of the vectors 

r = sin 0 cos ¢ i + sin 0 sin ¢ j + cos 0 Z 

o = cos e cos ¢ i + cos e sin ¢ j - sin e z 
¢ = -sin¢i + cos¢j. 

See Figure A.3. The local basis is right-handed. The unit vectors do not change 
with r, but 

or ~ 00 ~ 
00 = (), ae = -r, 

or ~ 
a¢ = siner/J, 

00 ~ 
a¢ = cosOr/J, 

a¢ 
ae = 0, 

a¢ . II ~ Il ~() 
a¢ = - sm u r - cos u . 

The volume element in spherical coordinates is 

dV = hrhohq, dr de d¢ = r2 sin 0 dr dO d¢. 

The area element on the sphere r = constant is 

dSr = hohq, dO d¢ = r2 sin 0 de d¢. 

The area element on the cone e = constant is 

dSo = hrh¢ dr d¢ = r sin 0 dr d¢. 

The area element on the half-plane ¢ = constant is 

dSq, = hrhe dr dO = r dr de. 
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z 

y 

x 

Figure A.3: Spherical coordinate system. 

A.4.2 Gradient, divergence and curl 

In terms of spherical coordinates, the gradient of the scalar field f(r,B,cp) is 
expressed by 

For spherical coordinates, hr = 1, he = rand hq, = r sin B. The divergence of 
the vector field F = Fr r + Fe 7J + Fq, ¢ is 
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The curl of F is given by 

r 
1 8 

VxF= ~() 8r r sm 

r 7J r sin () ¢ 
8 8 

8() 8¢ 

1 ( . 8F¢ 8FIJ) ~ 
= r sin () cos () F¢ + sm () 8() - 8¢ r 

1 (8Fr . . 8F¢) ~ + -- - -sm()F¢-rsm()- () 
rsin() 8¢ 8r 

1 ( 8FIJ 8Fr) ~ +:;: FIJ + r 8r - 8() 1J. 

A.4.3 Laplace and advection operators 

Using the results above, the expressions of the Laplacian operators in spherical 
coordinates are easily found. The Laplacian of the scalar field f(r, (), ¢) assumes 
the form 

whereas the Laplacian of the vector field F = Fr r + FIJ 7J + F¢ ¢ is 

V2F= (V2F _ 2Fr _ _ 2_8(sin()FIJ ) _ _ 2_8F¢) r 
r r2 r2 sin 0 80 r2 sin () 8¢ 

+ (V2FIJ _ FIJ _ 2cos() 8F¢ +! 8Fr) 7J 
r2 sin 2 () r2 sin 2 () 8¢ r2 8() 

+ (V2F _ F¢ + 2cos() 8FIJ + _2_8Fr) ¢. 
¢ r2 sin2() r2 sin2() 8¢ r2 sin () 8¢ 

Finally, the advection operators in spherical coordinates assume the form 
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( '1"'1) [( '1"'1) aeUe + aq,uq,] ~ a·vu= a·vur - r 
r 

+ [(a. V)ue + aeUr - c;teaq,uq,] 7J 

[( '1"'1) aq,ur + cot e aq,ue] :;... + a· v uq, + 'f'. 
r 



Appendix B 

Separation of vector elliptic 
equations 

B.l Introduction 

Many of the methods discussed in this study for the approximate solution of the 
incompressible Navier-Stokes require to solve Poisson and Helmholtz equations 
of vector type, supplemented by Dirichlet boundary conditions. As well known, 
this kind of boundary value problems for a vector field separates into uncoupled 
Dirichlet problems for the scalar components of the unknown only in Cartesian 
coordinates. On the contrary, when the vector elliptic equation is expressed 
in polar, cylindrical or spherical coordinates, the Laplace operator acting on a 
vector field produces a system of coupled elliptic equations for the orthogonal 
components of the unknown. The aim of the present Appendix is to describe the 
similarity transformations which reduce the vector Poisson equation expressed 
in these orthogonal coordinate systems into a set of uncoupled elliptic equations 
for scalar unknowns. 

Four different geometrical situations will be analyzed. Firstly, the vector 
two-dimensional Poisson equation in polar coordinates is examined (section B.2). 
Secondly, the case of elliptic equations for a vector field defined on, and tangen­
tial to, a spherical surface is considered, using the latitude and the longitude 
as orthogonal coordinates (section B.3). For both cases, the same similarity 
transformation is found to be effective. 

Three-dimensional equations are then addressed, starting with the exami­
nation of cylindrical coordinates (section B.4). Here, the solution domain of 
the Poisson equation is assumed to consist of an entire annular region of the 
three-dimensional space, so that the dependence on the angular variable can 
be represented by Fourier analysis. A convenient complex representation of the 
vector field is introduced to obtain a real (i. e., noncomplex) characterization 
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of the operator occurring in the Fourier-transformed problem. In this way, the 
three-dimensional vector problem is reduced to a set of two-dimensional prob­
lems, but always of vector type. Two of the three cylindrical components of 
each Fourier mode, with the exception of the first mode, are found to be coupled 
together by the elliptic operator, like the cylindrical components of the original 
three-dimensional vector problem. This coupling is eliminated by a similarity 
transformation which reduces the operator to a diagonal form. 

A similar analysis is finally conducted for the 3D vector Poisson equation 
in annular regions radially bounded by two concentric spherical surfaces, using 
spherical coordinates (section B.5). In this case, after the Fourier analysis of the 
longitudinal dependence, the three spherical components of each Fourier mode of 
the vector unknown are found to be solution of a system of three two-dimensional 
elliptic equations which are coupled together. The coupling is eliminated by an 
appropriate similarity transformation and the solution of the original problem is 
thus reduced to a sequence of purely scalar elliptic equations in two dimensions, 
plus the operations for performing the transformation, the Fouries analysis of 
the data as well as the synthesis of the solution. 

As it will be shown, the similarity transformations which allow the uncou­
pling (in 3D after Fourier analysis) of the orthogonal components of the vector 
unknown are so simple that some of them, if not all, may have been already con­
sidered and employed in other studies. However, since the complete set of these 
transformations is not easily available in the computational literature, it is col­
lected here, also with the purpose of showing how the use of solution algorithms 
for scalar two-dimensional elliptic equations can be extended to the solution of 
Dirichlet problems for vector fields in two and three dimensions. 

B.2 Polar coordinates 

Let us consider the vector Poisson equation '\72u = f in two dimensions expressed 
in polar coordinates (r, ¢). The Laplace operator in this coordinate system is 

the vector field u being expressed in its polar components (un uq,) according to 

u(r, ¢) = ur(r, 4;) r(¢) + uq,(r, ¢) ;j,(¢) , 

where r( ¢) and ;j,( ¢) are the unit vectors of the polar coordinate system. Due 
to the dependence of the unit vectors on the angle ¢, the action of the Laplace 
operator on a vector field is such that the vector Poisson equation becomes, in 
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polar components, (see, e.g., Acheson [1]) 

( 2 1) 28ucf> 
\7 - r2 Ur - r2 8¢> = fr' 

( 21) 28ur 
\7 - r2 ucf> + r2 8¢> = fcf>· 

Thus, a system of two coupled scalar elliptic equations for the polar components 
of the unknown is obtained. Introducing the matrix differential operator 

the vector Poisson equation \72u = t can be written in the matrix form: 

Let us now consider the change of variables defined by the following linear trasfor-
mation 

t(¢» = (Sin¢> co~¢» 
cos¢> - sm¢> , 

The matrix t(¢» is such that t(¢» = t(¢»tr = t(¢>)-l, and thus is both symmetric 
and orthogonal. As usual, the superscript "tr" denotes transposition. By simple 
calculations one can show that the similarity transformation provided by matrix 
t( ¢» is such that 

2 (\72 0) t(¢» V t(¢» = 0 \72 , 

i. e., it diagonalizes the matrix operator of the vector Poisson equation in polar 
coordinates. As a consequence, the solution of such an equation can be calculated 
by first applying the transformation t(¢» to the source field t, then solving the 
two independent equations 

\72Ul = iI, 

\72U2 = 12, 

and finally backtrasforming the two computed solutions Ul and U2 according to 

Of course, the transformation t( ¢» must be applied also to the prescribed data 
of the boundary conditions associated with the original vector elliptic problem. 

The same trasformation can be obviously applied also to the Dirichlet vector 
problem for the Helmholtz operator (\72 - 'Y), with 'Y > O. More generally, the 
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similarity trasformation is effective in separating the polar components in any 
Dirichlet problem for the operator (\72 - r(r)), where r(r) is a given function, 
possibly satisfying some suitable conditions. 

In the particular case of an annular domain, h ~ r ~ r2, 0 ~ ¢ < 27f], the 
two-dimensional scalar Poisson equation \72u = f could be solved by introducing 
a Fourier representation of the dependence on ¢ in f and U by means of complex 
Fourier series, namely, 

00 00 

f(r, ¢) = L fm(r) eim4>, u(r, ¢) = L um(r) eim4>. 
m=-oo m=-oo 

This decomposition reduces the two-dimensional Poisson equation to a set of 
ordinary differential equations for the second-order operator 

The equation governing the Fourier coefficient U m (r), namely, 

is an Euler (equidimensional) equation whose solution can be written as 

where Am and Bm are constants determined by the boundary conditions, and 
Fm(r) is any particular solution to the equation (14). 

It is interesting to note that, always with reference to the annular domain, 
the solution method above is not the only method allowing the reduction of the 
vector elliptic equation to a set of uncloupled ordinary differential equations for 
scalar unknowns. Another method consists in introducing the Fourier decom­
position before uncoupling the vector components of the unknown by means of 
the similarity trasformation. In fact, let the vector field u(r, ¢), 0 ~ ¢ < 27f, be 
represented by means of the following complex Fourier series: 

00 

u(r, ¢) = uo(r; ¢) + L um(r; ¢) eim4>, 
m=-oo 

m#O 

where 
uO(r; ¢) = ur,o(r) r(¢) + u4>,o(r) ¢(¢) 

and 

In the expansion above, the coefficient of the angular component of the Fourier 
mode, with the exclusion of the first mode, has been multiplied by the imaginary 
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unit in order to obtain a purely real representation of the second-order matrix 
operator acting on the Fourier coefficients of the vector mode. The condition 
that the vector function u be real-valued implies that the complex coefficients 

ur,m(r) = vr,m(r) +iwr,m(r), 

uc/>,m(r) = vc/>,m(r) + i Wc/>,m(r) , 

for m > 0, satify the following conditions: 

Wr,-m == -wr,m; 

Vc/>,-m = -vc/>,m, Wc/>,-m = wc/>,m· 

According to this Fourier representation, the Laplace operator V2 acting on 
the Fourier coefficients of the mth vector mode becomes 

Therefore, the conditions of reality mean that the complex system 

'D~ (~r,m) = (fr,m) 
c/>,m fc/>,m 

has to be solved only for m > o. Of course, such a complex system is equivalent 
to the two real systems 

'D~ (~r,m) = (9r,m) , 
c/>,m 9c/>,m 

'D~ ( Wr,m) = (hr,m) , 
wc/>,m hc/>,m 

where the right hand sides are the real and imaginary parts of the complex 
Fourier coefficients of j, i. e., j m = gm + i hm· 

Introducing the similarity trasformation 

the matrix ordinary differential operator 'Dm is diagonalized as follows 

,,",2 (1);'_1 0) 
S ~ms = 0 1)2 . 

m+1 

This uncoupling is exploited in section 4 to deal with the three-dimensional vector 
Poisson equation expressed in cylindrical coordinates. 

Once the pairs vr,m, vc/>,m, and wr,m, wc/>,m, have been determined, the solution 
u can be expressed in real form according to 

u(r, ¢) = {ur,o(r) + 2 f1 [vr,m(r) cos(m¢) - wr,m(r) sin(m¢)]} r(¢) 

+ {uc/>,o(r) - 2 f1 [vc/>,m(r) sin(m¢) + wc/>,m(r) cos(m¢)]} 4>(¢). 
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B.3 Spherical coordinates on the unit sphere 

The similarity trasformation t( ¢) is effective also in diagonalizing the Poisson 
equation which governs a vector field defined on, and tangential to, the surface 
of a sphere. Consider the unit sphere and an ortogonal coordinate system on 
it, consisting of the angular variables latitude 0 (0 ::; 0 ::; 11") and longitude ¢ 
(0::; ¢ < 211"). The Laplace operator over the unit sphere is 

and a vector field u "belonging" to the spherical surface can be expressed in 
terms of its spherical components u(} and u¢ according to 

u(O, ¢) = U(}(O, ¢) 0(0, ¢) + u¢(O, ¢) ~(O, ¢), 

where 0(0, ¢) and ~(O, ¢) denote the two unit vectors of the spherical coordinate 
system over the spherical surface. 

It is to be noted that the Laplacian and the other related second-order dif­
ferential operators introduced in each section of this Appendix represent the 
operators in different coordinates, but are indicated by identical symbols in the 
various sections to avoid a cumbersome notation. In other words, the definite 
meaning of these operators changes in each section although they are denoted 
identically, since the range of validity of each definition is limited only to a specific 
section. 

Considering now the vector Poisson equation \72u = /, in terms of its spher­
ical components it becomes 

Introducing the matrix differential operator 

( 
'\72 _ 1 _2COS(}.2..) 

V2 = sin2(} sin2(} o¢ , 
2cos () .2.. '\72 _ 1 
sin2(} o¢ sin2(} 

the Poisson equation can be written in the matrix form 
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Now, the partial derivative :</> occurs in this matrix operator V2 as well as in the 
Laplacian \72 exactly as it occurrs in the corresponding operators in polar coor­
dinates. Therefore, the similarity trasformation t( ¢) introduced in the previous 
section, 

t(¢) = (Sin¢ Co~¢) 
cos¢ -sm¢ , 

diagonalize also the matrix operator V2 for spherical coordinates, namely, 

2 (\72 0) t(¢) V t(¢) = 0 \72 . 

Similarly to polar coordinates, the solution of the equation \72u = j on the unit 
sphere can be calculated by applying the transformation t( ¢) to the source field 
j, solving the two independent equations 

\72Ul = ft, 

\72U2 = 12, 

and backtransforming the calculated solutions through 

The same trasformation can be applied to more general elliptic equations, such 
as, for instance, the Helmholtz equation (\72 - 'Y)u = j, with 'Y > 0, or the 
equation (\72 - r( 8))u = j, where r( 8) is a given function possibly satisfying 
convenient conditions. 

As for polar coordinates, if the domain is such that 0 :::; ¢ < 27l', it would 
be possible to reduce each scalar Poisson equation \72u = f to a set of second­
order ordinary differential equations by introducing a Fourier decomposition of 
the involved functions. 

B.4 Cylindrical coordinates 

Coming to three-dimensional problems, we examine first the case of cylindrical 
coordinates (r, z, ¢). Let us consider the Poisson equation \72u = j, with the 
Laplace operator defined by 
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If the vector field U is expressed in terms of its cylindrical components Un U z 

and u</>, the Laplacian pertaining to the vector problem is found to be given by 
the matrix (see section A.3.3 of Appendix A) 

We assume now that the domain of definition of the elliptic equation goes all 
around the z-axis, that is, 0 :::; ¢ < 27r. Under these circumstances, the vector 
field u(r, z, ¢) can be represented by means of a complex Fourier series, which 
we will write in the following form 

00 

u(r, z, ¢) = uo(r, z; ¢) + L um(r, z; ¢) eim</>, 

m=-oo 
m#O 

where 

uo(r, z; ¢) = u~(r, z) f(¢) + u~(r, z) Z + u~(r, z) ¢(¢) 

and 

um(r, z; ¢) = u~(r, z) f(¢) + u:,,(r, z) z + u't,.(r, z) ¢(¢) i. 

In the two expressions above, f(¢), z and ¢(¢) denote the unit vectors of the 
cylindrical coordinate system. (Note that here f( ¢) represents the direction 
orthogonal to the z-axis and is not the radial unit vector pointing out from the 
origin.) 

Being interested in the solution of only real vector fields, we have multiplied 
the coefficient of the angular component of the Fourier mode, with the exclusion 
of the first mode, by the imaginary unit in order to obtain a purely real repre­
sentation of the second-order matrix operator acting on the Fourier coefficients 
of the vector mode (see later). Then, the condition of reality for u expressed by 
the Fourier series above implies that the real and imaginary parts of its Fourier 
coefficients U m = Vm + i Wm with m -=I- 0 must satisfy the conditions: 

W':m = -w:,,; 

W </> =w</> 
-m m" 

It follows that the Fourier expansion of a real vector field in cylindrical coordi-
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nates can be written also in the following form 

u(r, z, ¢) = {u~(r, z) + 2 %:1 [v;;' (r, z) cos(m¢) - w;;'(r, z) Sin(m¢)]} f(¢) 

+ {u~(r, z) + 2 %:1 [v;:'(r, z) cos(m¢) - w;:'(r, z) sin(m¢)]} z 
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+ {ut(r, z) - 2 %:1 [vt,(r, z) sin(m¢) + wt,(r, z) cos(m¢)] } ;P(¢). 

According to the adopted Fourier representation, the Laplace operator for 
the Fourier coefficient of the mth mode assumes the form 

Furthermore, the matrix Laplace operator for the Fourier coefficients of a vector 
field becomes 

( 8;"-~ 0 ~';') 
8;" = 0 8;" 0 . 

2m o 8 2 - l ""T2 m r2 

Thus, for m -=I- 0 there is a coupling between the two components of the vector 
mode normal to the z-axis, whereas the axial component is always uncoupled. 
Consider the change of variables given by the following linear transformation: 

1 (1 0 1) s= M 0 V2 0 , 
v 2 1 0 -1 

which lineary combines only the first and the third components (u;' = u:'J The 
matrix S is such that S = str = S-l and that 

The solution of the vector mode with m -=I- 0 can be determined by first 
applying the trasformation S to the the Fourier coefficient f m of the source term 
f, then solving the three uncoupled equations 

82 2 f2 
mUm == m' 
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and finally backtrasforming the solutions according to 

For the first Fourier mode m = 0, the similarity trasformation is not needed 
since the three equations for the cylindrical components are already uncoupled; 
in fact, the operator of the first mode is already in the diagonal form 

(
fJ2 00) 

86= ~ 05 0 . 
o 0 or 

Of course, a Fourier analysis of the source term f and of the data for the 
boundary conditions is required before the solution process, and a final Fourier 
synthesis of the solutions Um, m = 1,2, ... , M, is to be performed as the last 
step of the solution process. 

B.5 Spherical coordinates 

We are now ready for the most interesting case, i.e., the three-dimensional vector 
Poisson equation in spherical coordinates (r, e, ¢), assuming that the domain goes 
all around the polar axis, namely, 0 :::; ¢ < 27f. The Laplace operator in spherical 
coordinates is (cf. section A.4.3 of Appendix A) 

V' = -- r - + ---- sm e- + . 210(20) 10(.0) 102 
r2 or or r2 sin e oe oe r2 sin2e 0¢2 

When the Laplacian acts on a vector field U expressed in terms of its spherical 
coordinates Un Uo and u¢' the following matrix differential operator has to be 
considered 

- r2 ~nO io(sinO ... ) 

\72 _ 1 
r2 sin20 

2cosO 8 
r2 sin20 8¢ 

2 8 ) - r2 sine 8¢ 

2cosO 8 
- r2 sin2e 8¢ . 

\72 _ 1 
r2 sin2e 

Let us now represent the dependence on the cyclic coordinate ¢ by means of 
the Fourier series 

00 

u(r, e, ¢) = uo(r, e; e, ¢) + I: um(r, e; e, ¢) eim¢, 
m=-oo 

m#O 
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where 
r ~ 0 ~ ¢ ~ uo(r, (); (), ¢) = uo(r, ()) r((), ¢) + uo(r, ()) O((), ¢) + uo(r, ()) ¢((), ¢) 

and 

um(r, (); (), ¢) = u:-r,(r, ()) r((), ¢) + u~(r, ()) O((), ¢) + u'!'n(r, ()) ¢((), ¢) i. 

In the two expressions above, r((), ¢), O((), ¢) and ¢((), ¢) denote the unit vectors 
of the spherical coordinate system. The coefficients of the ¢ component of the 
Fourier modes with m -=I- 0 have been multiplied by the imaginary unit to obtain 
a purely real representation of the second-order matrix operator acting on the 
Fourier coefficients of the vector mode. 

The condition of reality of the vector field u expressed in spherical coordinates 
implies that its complex Fourier coefficients U m = Vm + i Wm with m -=I- 0 have 
real and imaginary parts satisfying the following conditions 

W ¢ =w¢ 
-m mO 

As a consequence, the Fourier series above of a real vector field u can be written 
also in the form 

u(r, (),¢) 

= {uo(r, ()) + 2 %;1 [v:-r,(r, ()) cos(m¢) - w:-r,(r, ()) sin(m¢)] } r((), ¢) 

+ {ug(r,()) +2 %;1 [v~(r,())cos(m¢) -w~(r,())sin(m¢)] }O((),¢) 

+ {ut(r, ()) - 2 %;1 [v!(r, ()) sin(m¢) + w!(r, ()) cos(m¢)] } ¢((), ¢) 

which may be more convenient for the computations. 

By virtue of the adopted Fourier expansion, the operator representing the 
Laplace operator V'2 in the space of the Fourier coefficients of a scalar function 
is 

EP = ~~ (r2~) + _1_~ (sin()~) _ --::-m_2....,..-
m r2 or or r2 sin () o() o() r2 sin2() , 

whereas the operator representing the Laplace matrix operator V 2 in the space 
of the Fourier coefficients of a vector field is 

- r2 ~nO to (sinO ... ) 

82 _ 1 
m r2 sin20 

2mcosO 
r2 sin20 

2m ) 
r2 sinO 

2mcosO 
r2 sin20 . 

82 _ 1 
m r2 sin20 
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Thus, for m =I- 0, the three spherical components of the vector Fourier mode are 
coupled together, whilst for the first mode, m = 0, only the first two componenst 
are coupled. 

The similarity trasformation which uncouples the three equations is con­
structed in two steps: first, the coupling between the rand e components due 
to the off-diagonal terms containing the first-order derivative 10 is eliminated; 
then, the remaining coupling between the first new variable and the third un­
changed variable (the 1> component) is eliminated by means of the same similarity 
transformation considered in the analysis of the cylindrical coordinates. 

Let us consider the (partial) change of variables defined by the linear trans­
formation 

(
sin e cos eo) 

T(e) = cose -sine 0 , 
o 0 1 

As for matrix t( 1» occurring in the previous analysis of polar coordinates, matrix 
T(e) is such that T(e) = Ttr(e) = T-1(e). Furthermore, by standard calcula­
tions, it is possible to show that the similarity trasformation provided by matrix 
T(e) gives the following partial diagonalization of the matrix operator 8;": 

( 
a2 - 1 0 

T( e) 8;" T( e) = m :2 sin
2

0 a;' 

~ 0 
r2 sinO 

It is important to note that, even though the matrix T( e) is coincident (apart 
from its dimension) with t(1)), this demonstration is different from, and less 
elementary than, that given for the polar coordinates because of the presence of 
the function sin e inside and outside the derivative 10 in the operator 8;" as well 
as in its matrix counterpart 8;". 

Very easy is instead the elimination of the coupling still remaining between 
the first (new) and the third (old) components of the vector mode, the structure 
of the coupling being identical to that encountered for the cylindrical coordinates. 
Thus, introducing a second linear trasformation defined by the matrix 

1 (1 0 1) 
8= m 0 v'2 0 , 

v 2 1 0 -1 

with, as before, 8 = 8 tr = 8-1, one obtains immediately 
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Therefore, defining the complete trasformation R(B) = 8T(B), it is immediate 
to obtain 

1 ( sin B cos B 1 ) 
R(B) = V2 V2cosB -V2sinB 0 , 

2 sinB cosB -1 

and the previous complete diagonalization of the matrix operator 8;" can be 
written as 

(8'; 1 0 0) 
R(B) 8;" R(B)tr = 0 8'; 0 , 

o 0 8';+1 

since T(B) 8 = T(B)tr 8 tr = (8T(B))tr = R(B)tr, by the properties of matrices 
T( B) and 8. It is interesting to note that the same properties imply T( B) 8 = 
T(B) -18-1 = (8T(B)) -1 = R(B) -1, so that R(B) tr = R(B) -1 and R(B) is 
orthogonal, but R( B) -=I- R( B) tr since T( B) and 8 do not commute. 

The solution of the equations for the mth Fourier mode with m -=I- 0 proceedes 
as follows: first, the trasformation R(B) is applied to the Fourier coefficient 1m 
of the source term I of the Poisson equation; then, the three uncoupled elliptic 
2D equations 

!')2 2 j2 
umUm == m' 

are solved; finally, the spherical components of the mth Fourier mode are ob­
tained through the backtransformation 

The problem for the first Fourier mode m = 0 is simpler, since the corre­
sponding matrix operator in the Fourier space is 

( 

<>2 _ 1.. --2-2..(sl·nO) 0) va r2 r2 sinO {}O ... 

8~= f,fe {}r O· 

o 0 ~ 

Thus, the similarity trasformation performing the diagonalization is easily found 
to be 
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The solution precedure for the first mode m = 0 amounts therefore to transform­
ing the source term 10 by means of matrix T((}), solving the three uncoupled 
equations 

a2 2 ;2 
OUo = JO, 

and backtrasforming the computed solutions through 

Needless to say, all of the transformations above must be performed also on 
the data of the boundary conditions. Moreover, steps of Fourier analysis and 
synthesis must precede and follow the solution procedure. 

The same procedure can be applied to solve Dirichlet vector problems for the 
Helmholtz operator ('V2 - 'Y), with 'Y > 0, as well as for more general elliptic 
operators of the form ('V2 - r(r, ¢)), where the function r(r, ¢) can be subject 
to suitable conditions. 

To conclude, we recall that the similarity transformation described in this 
Appendix can be combined with existing algorithms for the numerical solution 
of scalar elliptic equations in two dimensions to obtain solution methods for 
vector Dirichlet problems in any plane region and in annular three-dimensional 
regions. 



Appendix C 

Spatial difference operators 

C.l Introd uction 

This Appendix contains the various difference operators which are involved in the 
spatial discretization of the transient advection equation for a scalar unknown 
by means of finite elements. We consider the equations both in two and three di­
mensions and assume a uniform mesh of square and cubic elements, respectively, 
with a multinear interpolation of the unknown variable. We will give also the 
explicit expressions of the operators produced by the application of the Taylor­
Galerkin method to the advection equation. The Fourier representation of the 
various spatial operators is provided to allow the study of numerical stability 
and response properties of integration schemes for multidimensional problems. 

C.2 2D equation: four-node bilinear element 

Let a variable u(x, y) be approximated over a uniform mesh of square elements of 
size h by means of bilinear functions which match with continuity at interelement 
boundaries. When the Galerkin method is applied to solve an advection equation 
of the type Ut + (a· V)u = s, approximately, one obtains a semidiscrete equation 
which involves spatial difference operators of first order and also of second order 
due to the presence of the consistent mass matrix. Such operators are obtained 
from the following elementary first-order operators: 

(i1x U)j,k = ~(UH1,k - Uj-1,k), 

(i1 yU)j,k = ~(Uj,k+l - Uj,k-l), 

(i1xyU)j,k = ~(UH1,k+l - Uj-1,k-l), 

(i1yxU)j,k = HUH1,k-l - Uj-1,k+l), 
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~ _2( 1 1) . .dy -"3 .dy + 4.dXY - 4.dyx , 

and from the following elementary second-order operators: 

(8;U)j,k = Uj+1,k - 2Uj,k + Uj- 1,k, 

(8;U)j,k = Uj,k+l - 2Uj,k + Uj,k-1, 

(8;yU)j,k = Uj+1,k+1 - 2Uj,k + Uj- 1,k-b 

(8;xU)j,k = Uj+1,k-1 - 2Uj,k + Uj- 1,k+1, 

82 282 1 (82 82 ) 1 82 x = "3 x + (3 xy + yx -"3 Y' 

82 282 1 (82 82 ) 182 y = "3 y + (3 xy + yx -"3 x' 

The Galerkin method applied to the equation Ut + (a. V)u = 0 gives the semidis­
crete equation 

dU 1 ~ 
M-=--a·..::lU 

dt h ' 
where 

= (1 + ~8;) (1 + ~8;) , 

It is worth noting the factorization of the consistent mass matrix operator, which 
allowed to develop a very efficient method for the solution of the linear system of 
the consistent mass on Cartesian (possibly nonuniform) meshes (Staniforth and 
Mitchell 1978 and 1987). 

The application of the Taylor-Galerkin method would lead instead to the 
fully discrete equation 

MTG(V)(Un+1 - un) = -v. a un + K(v)Un, 

where v = (.dt/h)a and 

K(v) = v;8;, + 2vx vy.dx .dy + v;8;, 
MTG(V) = M - ~K(v). 
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In other words, one has the following correspondences 

L1t a· V ---+ v· ..::1, 
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Introducing a Fourier analysis with mode exp(ik· x) and the dimensionless 
wave number ~ = hk, it is not difficult to find the Fourier image of the relevant 
difference operators: 

M (~) = ~ (1 + ~ cos ~) (1 + ~ cos 1]) 

= (1 - ~ sin2 ~~) (1 - ~ sin2 !1]) , 

K(~,v) = -~v;(l- cos~) (1 + ~COS1]) - 2vxvysin~ sin 1] 

-~ v; (1 - cos 1]) (1 + ! cos ~) , 

MTG(~, v) = M(~) - iK(~, v). 

Of course A(~, v) denotes the Fourier transform of v· ..::1. 

C.3 3D equation: eight-node trilinear element 

The approximate solution of the three-dimensional equation Ut + (a· V)u = 0 
on a uniform cubic mesh of trilinear elements requires to consider the following 
elementary spatial difference operators. The first-order operators are 

(L1x U)j,k,1 = ~(Uj+l,k,l - Uj-1,k,I), 

(L1 y U)j,k,1 = HUj,k+1,1 - Uj,k-l,l), 

(L1z U)j,k,l = !(Uj,k,l+l - Uj,k,l-l), 

(L1xyU)j,k,1 = HUj+1,k+1,l - Uj-1,k-l,I), 

(L1yxU)j,k,1 = !(Uj+l,k-l,l - Uj-1,k+l,I), 

(L1zx U )j,k,1 = !(Uj+l,k,l+l - Uj-1,k,l-d, 

(L1xzU)j,k,1 = ~(Uj+l,k,l-l - Uj- 1,k,I+1), 

(L1yzU)j,k,1 = HUj,k+l,l+l - Uj,k-l,l-l) , 

(L1 zy U)j,k,1 = ~(Uj,k+1,I-l - Uj,k-l,l+l), 
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(LlxyzU)j,k,1 = ~(Uj+1,k+l,1+1 - Uj- 1,k-1,1-1), 

(LlXyzU)j,k,1 = ~(Uj+1,k+l,l-1 - Uj- 1,k-1,1+l), 

(LlxyzU)j,k,1 = ~(Uj+1,k-1,1+l - Uj- 1,k+l,1-1), 

(LlXyzU)j,k,1 = HUj- 1,k+l,1+1 - Uj+1,k-1,1-1), 

- 4[ III Llz = 9 Llz + 4"(Llzx - Llxz + Llyz - Llzy) + 16(Llxyz - Llxyz + Llxyz + Llxyz ) . 

The second-order operators are 

(82U) = U· lk I - 2U· k 1+ U· 1 k I x j,k,l J+ , , ), , )- , , , 

(82U) = U' k 11 - 2U k1 + U' k 11 Y . k l ), + , ), , ), - , , 
), , 

(82U) = U' k1 1 - 2U k1 + U' k1 1 Z . k l ), ,+ J, J ), ,- , 
), , 

(8;yU\,k,1 = Uj+1,k+l,1 - 2Uj,k,1 + Uj- 1,k-1,!, 

(8~XU)j,k,1 = Uj+l,k-1,1 - 2Uj,k,1 + Uj- 1,k+l,I, 

(8;xU) j,k,l = Uj+1,k,l+l - 2Uj,k,1 + Uj- 1,k,l-b 

(8;ZU)j,k,1 = Uj+1,k,I-1 - 2Uj,k,1 + Uj- 1,k,I+l, 

(8y2zU) = Uj k+1/+1 - 2Uj k 1+ Uj k-11-1, 
i,k,l " , , " 

(8;yzU) j,k,l = Uj+l,k+l,I+l - 2Uj,k,1 + Uj- 1,k-1,1-1, 

(8;yzU) j,k,l = Uj+l,k+l,I-l - 2Uj,k,1 + Uj- 1,k-1,1+l, 

(8;yzU) j,k,l = Uj+1,k-1,1+1 - 2Uj,k,1 + Uj- 1,k+1,1-1, 

(8;'YZ U)j,k,1 = Uj- 1,k+l,1+1 - 2Uj,k,1 + Uj+l,k-1,1-1, 

82 - 82 2 2 2 82 82 - xy + 8yx + 8zx + 8xz + yz + zY' 

82-82 82 82 82 - xyz + xyz + xyz + xyz' 
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~ _ 4 [82 1 (82 82) 182 3 (82 82 ) 1 82] x - 9 x -"2 y + z + 4: - 8 yz + zy + 16 ' 

~ _ 4 [82 1 (82 82) 182 3 (82 82 ) 1 82] y - 9 y -"2 y + z + 4: - 8 zx + xz + 16 ' 

~ _ 4 [82 1 (82 82) 182 3 (82 82 ) 1 82] z - 9 z -"2 x + y + 4: - 8 xy + yz + 16 . 

The application of the Galerkin method to the advection equation in three di­
mensions gives the semi discrete equation 

where 

dU 1 ~ 
M-=--a·£lU 

dt h ' 

M = 1 + fr [8; + 8~ + 8; + ~82 + iG82] , 
a = (,1x,,1y,,1z). 

As in two dimensions, the consistent mass matrix allows a factorization in one­
dimensional operators 

M = (1 + ~8;) (1 + ~8~) (1 + ~8;) 
which can be exploited for the efficient solution of advection problems over a 
Cartesian mesh of brick elements. 

The application of the Taylor-Galerkin method introduces the additional 
operators 

K(v) = v;8; + v~8; + v;5; + 2vxvyLlxLly + 2vxvzLlxLlz + 2vyvzLlyLlz, 

MTdv) = M - ~K(v), 

where v = (Llt/h)a. Finally, the Fourier analysis of the numerical schemes can 
be done by means of the following explicit expressions 

M(~.) = ~ (1 + ~cos~) (1 + ~COS1J) (1 + ~cos() 

= (1 - ~ sin2 ~~) (1 - ~ sin2 h) (1 - ~ sin2 ~() , 

A(e, v) = ~ivxsin~ (1 + ~COS1J) (1 + ~cos() 

+ ~ivysin1J(1+~cos~) (1+~cos() 

+ ~ivysin( (1 + ~cos~) (1 + ~COS1]), 

K(e, v) = - ~v;(1- cos~) (1 + ~ cos 1]) (1 + ~ cos() 

- ~ v~ (1 - cos 1]) (1 + ~ cos ~) (1 + ~ cos () 

- ~ v; (1 - cos () (1 + ~ cos ~) (1 + ~ cos 1]) 

- 2vxvy sin ~ sin 1] - 2vxvz sin ~ sin ( - 2vyvz sin 1] sin 1]. 



Appendix D 

Time derivative of integrals over 
moving domains 

In this Appendix we provide some vector differential identities expressing the 
time derivative of integrals over domains which move and change in shape in an 
arbitrary manner. We consider the integrals over curves and surfaces moving 
and deforming themselves in the three-dimensional space, as well as integrals 
over three-dimensional regions whose boundary has a velocity specified at each 
point. 

These identities generalize to the three-dimensional space the well known 
theorem of calculus expressing the derivative of a definite integral with respect 
to a variable which the limits of integration and possibly the integrand depend 
on. If the variable involved in the derivation is denoted by t and referred to 
as "time," and the integration interval It = [aCt), bet)] depends on time, the 
theorem states 

dd rb(t)J(x,t)dx= rb(t)8J~x,t) dx+J(b(t),t)dbd(t) _J(a(t),t)da(t). 
t la(t) la(t) t t dt 

The time derivative of aCt) and bet) represents the "velocity" of the end points 
of It, according to the definition: 

and ( ) _ db(t) 
Vb t - dt ' 

so that the previous identity can also be written in the form 

dd lb(t) J(x, t) dx = lb(t)8J~x, t) dx + J(b(t), t) Vb(t) - J(a(t), t) va(t). 
t aCt) aCt) t 

This expression is now generalized to integrals expressing the circulation along a 
curve and the flux across a surface both evolving in the three-dimensional space in 
a known manner. The expression of the time derivative of the three-dimensional 
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ds 

Figure D.l: Curve moving and deforming in space. 

integrals of scalar and vector fields over a moving and deforming volume will be 
also given. 

The scalar functions and vector fields to be integrated in the following are 
defined not only on the integration domain but in the entire spatial region where 
the integration domain is evolving. We assume that the various functions are 
smooth enough so that the standard operations of calculus may be performed on 
them. 

D.l Circulation along a moving curve 

Let us consider a continuous curve Ct which moves and deforms itself with time 
and let Xc, (s) be its parametric representation at time t with s the arclength 
parameter. The end points of Ct will be (see Figure D.l) 

and 

The velocity of points of Ct at time t will be indicated by 

vc, = vc, (xc,), 

where xc, E Ct. 

Let F(x, t) denote a time-dependent vector field which is defined in the three­
dimensional region of evolution of Ct. The generalization of the previous differ­
ential identity to the circulation integral of F(x, t) along the moving curve Ct 

is: 

.:i r F.ds = r of. ds + r (VxF)xvc,.ds 
dt lc. Jc, at Jc, 
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ds 

Figure D.2: Closed curve moving in space. 

where, of course, 

and 

In particular, if the curve Ct is assumed to be closed (see Figure D.2), this 
result simplifies to 

~1 F.ds= 1 aF. ds + 1 (VxF)xvc,ds. 
dt lc, Jc, at Jc, 

Notice that this identity gives a straightforward proof of Kelvin circulation the­
orem. 

D.2 Flux across a moving surface 

Let us consider the flux of a vector field across a surface St which has a boundary 
Ct and which moves with a velocity given by 

Vs, = vs,(xs,), 

where Xs, ESt (see Figure D.3). 

The time derivative of the flux of F(x, t) across St is given by the following 
identity 

~ ff F.ndS= ff aF. ndS + ff (V.F) vs,.ndS 
dtlls, lls, at lls, 

+ 1 Fxvc,. ds, 
Jc, 
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n 

VCt 

Figure D.3: Bounded surface moving and deforming in space. 

where, of course, Vet = vs'(XCt)' This identity allows a direct demonstration of 
Helmholtz first vorticity theorem, see, e.g., Acheson [1, p. 162]. 

In particular, if the surface St is closed (see Figure D.4), the curvilinear 
integral along the boundary Ct disappears and the time derivative of the flux 
becomes 

dd H. F.ndS= H. ~F.ndS+ H. (V·F) vst.ndS. 
t~ ~~ ~ 

D.3 Integrals over a moving volume 

Consider finally a varying three-dimensional domain Vt bounded by the closed 
surface St whose points at time t move with the velocity 

VSt = vst(xst )· 

The derivative of the integral of a scalar function f (x, t) over the varying domain 
Vt with respect to time is given by the well known expression: 

d fff fff 8f(x, t) H. 
dt}}}v/(x,t)dV = }}}Vt at dV + Hs/ vst·ndS. 
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n 

/ 

Figure D.4: Closed surface moving and deforming in space. 

The last term represents the flux of the quantity f across the moving boundary 
of the integration domain. 

A similar expression holds for the integral of a vector quantity F(x, t) which 
is defined over a three-dimensional region containing Vt , namely, 

!llfv, F(x, t) dV = Ilfv, aF~;, t) dV + fA, F (Vs, n) dB. 

It is to be remarked that these results are obtained without considering any 
velocity field at points in the interior of the integration domain Vt . In other 
words, the identities provide the relationship implied by the kinematics of the 
boundary St and by the possible time dependence of the integrand, with no 
reference to any dynamical aspect associated with the field variable appearing in 
the integral. 

The two vector identities above can be useful to establish the relationship 
existing between the local and material (substantial) forms of the conservation 
laws for a fluid. In fact they eliminate the need of Lagrangian coordinates and of 
the change of variables associated with the flow map which gives the configuration 
at time t in terms of the initial one. In particular, the analysis of the conservation 
of momentum will be possible using the following extension of the divergence 
theorem: 

fJs F (G· n) dB = Illv [F (V· G) + (G. V)F] dV, 

which holds for any two differentiable vector fields F and G. 
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