Hot Plasma Dispersion Relation Solver

A MATLAB code to solve plasma kinetic dispersion relation is developed.


The Dielectric Tensor

The dielectric tensor for a hot plasma, which conforms the Maxwellian distribution, in a magnetic field can be expressed as

\[
\mathbf{K}(\text{Stix}) =
\begin{bmatrix}
K_1 & K_2 & K_4 \\
-K_2 & K_1 + K_0 & -K_5 \\
K_4 & K_5 & K_3
\end{bmatrix},
\]

where

\begin{align}
K_0 &= 2 \sum_j \frac{\omega_{pj}^2 e^{-\lambda_j}}{\omega k_{\parallel} v_{\parallel j}} \sum_{n=-\infty}^{\infty} \lambda_j (I_n – I_n’) A_{nj}, \\
K_1 &= 1 + \sum_j \frac{\omega_{pj}^2 e^{-\lambda_j}}{\omega k_{\parallel} v_{\parallel j}} \sum_{n=-\infty}^{\infty} \frac{n^2 I_n}{\lambda_j} A_{nj}, \\
K_2 &= i \sum_j \frac{\omega_{pj}^2 e^{-\lambda_j}}{\omega k_{\parallel} v_{\parallel j}} \sum_{n=-\infty}^{\infty} n (I_n – I_n’) A_{nj}, \\
K_3 &= 1 – \sum_j \frac{\omega_{pj}^2 e^{-\lambda_j}}{\omega k_{\parallel} v_{\parallel j}} \sum_{n=-\infty}^{\infty} I_n \left( \frac{\omega + n \omega_{c j}}{k_{\parallel} V_{\parallel j}} \right) B_{nj}, \\
K_4 &= \sum_j \frac{k_{\parallel} \omega_{pj}^2 e^{-\lambda_j}}{k_{\parallel} \omega c_j} \sum_{n=-\infty}^{\infty} \frac{n I_n}{\lambda_j} C_{nj}, \\
K_5 &= i \sum_j \frac{k_{\perp} \varepsilon_{j} \omega_{pj}^2 e^{-\lambda_j}}{k_{\parallel} \omega c_j} \sum_{n = -\infty}^{\infty} (I_n – I_n’) C_{nj},
\end{align}

and

\begin{align}
A_{nj} &= \left( 1 – \frac{k_{\parallel} V_{0j}}{\omega} \right) Z(\zeta_{nj}) + \frac{k_{\parallel} v_{\parallel j}}{\omega} \left( 1 – \frac{T_{\perp j}}{T_{\parallel j}} \right) \frac{Z'(\zeta_{nj})}{2}, \\
B_{nj} &= \left[ 1 + \frac{n \omega_{c_j}}{\omega} \left(1 – \frac{T_{\parallel j}}{T_{\perp j}}\right) \right] Z'(\zeta_{nj}) + \frac{2n\omega_{c_j}T_{\parallel j}V_{0j}}{\omega T_{\perp j} v_{\parallel j}} \left( Z(\zeta_{nj}) + \frac{k_{\parallel}v_{\parallel j}}{\omega + n \omega_{c_j}} \right), \\
C_{nj} &= \frac{n \omega_{c_j} V_{0j} Z(\zeta_{nj})}{\omega v_{\parallel j}} + \left[ \frac{T_{\perp j}}{T_{\parallel j}} – \frac{n \omega_{c_j}}{\omega} \left( 1 – \frac{T_{\parallel j}}{T_{\perp j}} \right) \right] \frac{Z'(\zeta_{nj})}{2}.
\end{align}

Here \( n \) refers to the harmonic and \( j \) to the species number, \( \omega_{pj} \) is the plasma angular frequency, \( \omega_{cj} \) the cyclotron angular frequency, \( \lambda_j = 0.5 k^2 \rho_{Lj}^2 \) the FLR parameter, \( \rho_{Lj} = v_{\perp j}/\omega_{cj} \) the Larmor radius, \( v_{\perp j} \) the perpendicular thermal velocity, \( v_{\parallel j} \) the parallel thermal velocity, \( v_{0j} \) the net parallel flow velocity, \( I_n = I_n(\lambda_j) \) the modified Bessel function of order \( n \), \( T_{\perp j} \) and \( T_{\parallel j} \) the perpendicular and parallel temperatures, respectively, \( Z(\zeta_{nj}) \) the plasma dispersion function evaluated at \( \zeta_{nj} = (\omega + n\omega_{cj} – k_{\parallel}v_{0j})/(k_{\parallel}v_{\parallel j}) \), \( \varepsilon_j = q_j/|q_j| \) the charge sign and \( q_j \) the charge.

The MATLAB Code

Evaluating K tensor corresponding to certain wave properties

As depicted in Figure [alm label=’flow1′], a ‘species’ object is created for each species within the plasma. Given the wave properties (\(\omega, k_\parallel\), and \(k_\perp\)), we obtain the responses of each species to the wave, including \(\omega_{cj}\) and \(\lambda_{j}\) (refer to ). Finally, the dielectric tensor is evaluated, and the plasma dispersion relation (LHS) is determined by calculating \(\det M\), where:

\begin{equation}
M = \left(
\begin{array}{ccc}
\kappa_{xx} – k_{z}^2 – k_{y}^2 & \kappa_{xy} + k_{x}k_{y} & \kappa_{xz} + k_{x}k_{z} \\
\kappa_{yx} + k_{y}k_{x} & \kappa_{yy} – k_{z}^2 – k_{x}^2 & \kappa_{yz} + k_{y}k_{z} \\
\kappa_{zx} + k_{z}k_{x} & \kappa_{zy} + k_{z}k_{y} & \kappa_{zz} – k_{\perp}^2
\end{array}
\right)
\end{equation}

Here, \(\kappa_j = K_j\). By rotating the coordinates and setting \(k_y=0\), we simplify the expression to \(k_\perp=k_x\).

In cases where waves are emitted from an antenna, \(k_\parallel\) is given, while \(k_\perp\) remains unknown. For any arbitrary \(k_\perp\), typically \(\det M\) does not equal zero. However, by exploring different \(k_\perp\), we can always discover the zeros of \(F(k_\perp)\equiv \det M(k_\perp)\).

FSOLVE: find zeros of \(F(k_\perp)\) by iterative algorithms

In MATLAB, the method is rather simple:

kx = fsolve(@getDetM, kx0);

Results and Discussion

1D Solver

The simplified 1D model configuration for the EAST tokamak is illustrated in Figure [alm label=’1dconfig’]. In terms of species, the plasma comprises hydrogen (H), deuterium (D), and electrons. The number densities of H and D are (0.1 n_e) and (0.9 n_e) respectively. Subsequently, (k_x) (also denoted as (k_{\perp})) is derived by the solver based on the plasma profile at various locations, ranging from 1.6m to 2.35m. Within the plasma, two lower hybrid wave modes are present: the fast wave and the slow wave. Their corresponding (k_x)’s are determined by supplying distinct initial values to the fsolve function (refer to Figure [alm label=’kx’]). The initial values, on the other hand, is from cold plasma solutions.

It is evident that the slow wave is unable to propagate within the plasma except within the edge areas. In contrast, the fast wave demonstrates the capability to propagate across most regions and experiences absorption (or reflection) at the core. This phenomenon aligns with the observation that resonance occurs in the core, as indicated by the cold plasma solution.

2D Solver

Given plasma profiles on a R-Z plain, we can similarly evaluate the 2D dispersion relation. Certain improvements, however, must be made to accelerate the computation and guarantee accuracy:

  • Dawson function from Faddeeva package (Algorithm of Steven G. Johnson, Faddeeva Package – AbInitio (mit.edu)), which is significantly faster than the built-in MATLAB function dawson.
  • Parallel computing. For efficient computation on 2D grids, the workload is distributed across multiple processors. Utilizing parfor, each processor can calculate one row concurrently, maximizing computational efficiency.
  • Update the initial values: Following the initial calculation, it’s observed that \(\det M\) still doesn’t reach zero on certain grids. This discrepancy arises from using a uniform initial value across all grids, which is anticipated to be inaccurate because while the wave propagates in most areas (\(text{Im}(k_x)\approx 0\)), it can be absorbed in other areas (\(\text{Im}(k_x)\gg \text{Re}(k_x)\)). However, for each grid (i, j), we can employ the mean value of its eight neighboring grids as the initial guess. This approach leverages the continuity of plasmas and allows us to run the solver for a second time to obtain calibrated results.

Then, the dielectric tensor can be evaluated from \(k_x\), and will be exported to COMSOL for further analysis of wave properties.

Reference

1.
Ye, W., Wu, H., Tan, Z. & Zou, Q. An Adaptive Time Stepping Algorithm and Its Application to Platelet Aggregation Simulation. in 2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom) 1360–1369 (IEEE, New York City, NY, USA, 2021). http://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00186.
1.
Shi, Y. et al. Study of adaptive symplectic methods for simulating charged particle dynamics. Journal of Computational Dynamics 6, 429–448 (2019).
1.
Qiao, Z., Zhang, Z. & Tang, T. An Adaptive Time-Stepping Strategy for the Molecular Beam Epitaxy Models. SIAM J. Sci. Comput. 33, 1395–1414 (2011).
1.
all the zeros of 𝜀(k�, 𝜔�) lie in the lower half 𝜔  plane.
1.
𝛿̃ NS 𝛽 (k, v, 𝜔)= 1 (2𝜋)3  d3r  ∞ 0 dt 𝛿N𝛽 (r − vt, v,0)e−i(k⋅r−𝜔t).
1.
∇2𝛿𝜙 =−1 𝜀0  𝛽 q𝛽  d3v  𝛿N𝛽(r − vt, v,0) + q𝛽 m𝛽  t 0 dt� ∇𝛿𝜙(r − v(t − t�), t�) ⋅ 𝜕f𝛽 (v) 𝜕v  .
1.
r𝛼 (t)=r(0) 𝛼 (t)− q𝛼 m𝛼  t 0 (t − t�)∇𝛿𝜙(r𝛼(t�), t�) dt�.
1.
and the contributions from the other parts of the contour including the horizontal lines and circles around the poles 𝜔  k encountered decaying exponentially with t  can be discarded.
1.
the pole at 𝜔� = k� ⋅ v𝛼 and the poles 𝜔� k (k = 1, 2, ⋯) corresponding to the zeros of 𝜀(k�, 𝜔�).
1.
Fried, B. D. & Conte, S. D. The Plasma Dispersion Function.
1.
Percival, D. J. & Robinson, P. A. Generalized plasma dispersion functions. Journal of Mathematical Physics 39, 3678–3693 (1998).
1.
Summers, D. & Thorne, R. M. The modified plasma dispersion function. Physics of Fluids B: Plasma Physics 3, 1835–1847 (1991).
1.
LaunchPadder-zh_CN – 乖眼看世界. https://molayc.com/blog/2022/04/07/launchpadder-zh_cn/.
1.
Rutherford, Lord. The Origin of the Gamma-Rays. The Scientific Monthly 34, 483–486 (1932).
1.
Wolfendale, A. A brief review of gamma ray astronomy. Nuclear Physics B-Proceedings Supplements 22, 80–85 (1991).
1.
Wolfendale, A. A BRIEF REVIEW OF GAMMA RAY ASTRONOWi.
1.
Saxton, J. A. The influence of atmospheric conditions on radar performance. The Journal of Navigation 11, 290–303 (1958).
1.
Fahey, T., Islam, M., Gardi, A. & Sabatini, R. Laser beam atmospheric propagation modelling for aerospace LIDAR applications. Atmosphere 12, 918 (2021).
1.
Der, S., Redman, B. & Chellappa, R. Simulation of error in optical radar range measurements. Applied Optics 36, 6869–6874 (1997).
1.
Wu, J., Wang, C. & Song, S. 月球着陆器典型故障模式分析(Analysis of Typical Fault Modes of Lunar Landers). Journal of Astronautics 35, 633–638 (2014).
1.
Wang, H. & Richardson, M. I. The origin, evolution, and trajectory of large dust storms on Mars during Mars years 24–30 (1999–2011). Icarus 251, 112–127 (2015).
1.
孙占海 & 罗克. “神舟八号” 飞船 γ 源高度控制装置安装工具和方法的改进. 航天器环境工程 28, 650–651 (2011).
1.
van Eijk, A. M. & Stein, K. Atmospheric and laser propagation. Technologies for Optical Countermeasures XIV 10435, 42–51 (2017).
1.
张楠, 吴世通 & 沈超. γ源辐射角度对光子高度计性能的影响分析(Analysis of Effect of γ Radiation Angle on the Photons Altimeter). 航天返回与遥感 35, 37–41 (2014).
1.
McLeod, R. R., Villalobos, I. P., Tomita, Y. & Sheridan, J. T. Photosensitive Materials and their Applications. in Proc. of SPIE Vol vol. 11367 1136701–1 (2020).
1.
Leslie, D. H. & Youmans, D. G. Atmospheric effects on eye-safe airborne laser radar. in Beam Control, Diagnostics, Standards, and Propagation vol. 2375 17–29 (SPIE, 1995).
1.
Gamma Ray Ranging for Spacecraft Landings – Keheng’s Physics Playground. http://kehengphysics.site/gamma-ray-ranging/ (2023).
1.
Dumont, R. Waves in Plasmas. (2007).
1.
Bobylev, A. V. & Nanbu, K. Theory of collision algorithms for gases and plasmas based on the Boltzmann equation and the Landau-Fokker-Planck equation. Phys. Rev. E 61, 4576–4586 (2000).
1.
Coulomb collisions in plasma can be treated as successive binary collisions @5#.
1.
Cohen, R. S., Spitzer, L. & Routly, P. McR. The Electrical Conductivity of an Ionized Gas. Phys. Rev. 80, 230–238 (1950).
1.
Doner, A., Horányi, M., Faller, J., Fontanese, J. & Munsat, T. Restoring light transmission of dusty glass surfaces on the Moon. Advances in Space Research 68, 4050–4055 (2021).
1.
Zhao, J., Du, X., Song, Y., Zhu, C. & Chen, P. Study on the influence of aerosol macroscopic characteristics on backscattering signals. in Third International Conference on Photonics and Optical Engineering (ed. Tian, A.) 103 (SPIE, Xi’an, China, 2019). http://doi.org/10.1117/12.2522031.
1.
Stein, K., Gladysz, S., Seiffer, D. & Zepp, A. Atmospheric limitations on the performance of electro-optical systems: a brief overview. in (eds. Van Eijk, A. M. J., Davis, C. C. & Hammel, S. M.) 92240U (San Diego, California, United States, 2014). http://doi.org/10.1117/12.2064631.
1.
Cain, J. R. Lunar dust: The Hazard and Astronaut Exposure Risks. Earth Moon Planets 107, 107–125 (2010).
1.
Ranvier, S., Hess, S., Mateo Velez, J.-C., Alvaro Sanchez, A. & De Keyser, J. DUSTER: A Multi-Sensor Instrument to Study Dust Transport and Electrostatic Removal for Exploration Missions. https://meetingorganizer.copernicus.org/EGU2020/EGU2020-21638.html (2020) doi:10.5194/egusphere-egu2020-21638.
1.
Balcerak, E. Data from Apollo missions show how lunar dust degrades instruments. EoS Transactions 95, 12–12 (2014).
1.
Cain, J. R. Lunar dust: The Hazard and Astronaut Exposure Risks. Earth Moon Planets 107, 107–125 (2010).
1.
Currie, D. & Prochazka, I. Lunar laser ranging and limits due to the Earth’s atmosphere. in Laser Communication and Propagation through the Atmosphere and Oceans IV vol. 9614 81–88 (SPIE, 2015).
1.
Purves, C. G. Geophysical Aspects of Atmospheric Refraction. (Naval Research Laboratory, 1974).
1.
Zhang, N., Wu, S. & Shen, C. Analysis of Effect of γ Radiation Angle on the Photons Altimeter. Aerospace Return and Remote Sensing 35, 37–41 (2014).
1.
Gebhardt, F. G. High power laser propagation. Appl. Opt. 15, 1479 (1976).
1.
Gebhardt, F. High power laser propagation. Applied optics 15 6, 1479–93 (1976).
1.
Bosch, T. Laser ranging: a critical review of usual techniques for distance measurement. Opt. Eng 40, 10 (2001).
1.
Weil, T. Atmospheric Lens Effect; Another Loss for the Radar Range Equation. IEEE Trans. Aerosp. Electron. Syst. AES-9, 51–54 (1973).
1.
Weil, T. Atmospheric Lens Effect; Another Loss for the Radar Range Equation. IEEE Trans. Aerosp. Electron. Syst. AES-9, 51–54 (1973).
1.
Pierrottet, D. et al. Linear FMCW Laser Radar for Precision Range and Vector Velocity Measurements. MRS Proc. 1076, 1076-K04-06 (2008).
1.
Vaughn, J. A. St. et al. Design of a Retro Rocket Earth Landing System for the Orion Spacecraft. in 2007 IEEE Aerospace Conference 1–12 (IEEE, Big Sky, MT, USA, 2007). http://doi.org/10.1109/AERO.2007.352819.
1.
Vaughn, J. A. S. et al. Design of a retro rocket earth landing system for the Orion spacecraft. in 2007 IEEE Aerospace Conference 1–12 (IEEE, 2007).

Downloads


Last Modified: